Artificial intelligence can dynamically adjust strategies for auxiliary diagnosing respiratory diseases and analyzing potential pathological relationships

Author:

Zhang Quan,Chen BinyueORCID,Liu Guohua

Abstract

Abstract Respiratory diseases are one of the leading causes of human death and exacerbate the global burden of non-communicable diseases. Finding a method to assist clinicians pre-diagnose these diseases is an urgent task. Existing artificial intelligence-based methods can improve the clinical diagnosis efficiency, but still face challenges. For example, the lack of interpretability, the problem of information redundancy or missing caused by only using static data, the difficulty of model to learn the interdependence between features, and the performance of model is limited by sparse datasets, etc. To alleviate these problems, we propose a novel RQPA-Net. It consists of Q&A diagnosis module (QAD) and pathological inference module (PI). The QAD is responsible for interacting with patients, adjusting inquiry strategies dynamically and collecting effective information for disease diagnosis. The designed multi-subspace network can alleviate the problem that classical method is difficult to understand the interdependence between features. The deep reinforcement learning designed also can alleviate the problem of classical methods lack of interpretability. The PI is responsible for reasoning potential pathological relationships between diseases or symptoms based on existing knowledge. Through integrating the advantages of deep learning and reinforcement learning techniques, PI can handle sparse datasets. Finally, for auxiliary diagnosis, the model achieves 0.9780 ± 0.0002 Recall, 0.9778 ± 0.0003 Acc, 0.9779 ± 0.0003 Precision and 0.9780 ± 0.0003 F1-score on the test set. In terms of assisting pathological analysis, compared with the end-to-end model, our model achieves higher comprehensive performance on different tasks and datasets with different degrees of sparsity. Even in sparse datasets, it can effectively infer potential associations between diseases or symptoms, and has higher potential clinical application. In this paper, we propose a novel network structure, which can not only assist doctors in diagnosing diseases, but also contribute to explore the potential disease mechanisms. It provides a new perspective for integrating AI technology and clinical practice.

Funder

National Natural Science Foundation of China

Tianjin Health Commission Foundation

Publisher

IOP Publishing

Subject

Pulmonary and Respiratory Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3