A unified model of suspension concentration distribution in sediment mixed turbulent flows using generalized fractional advection-diffusion equation

Author:

Kundu SnehasisORCID,Sinha Ravi RanjanORCID

Abstract

Abstract The fractional operator in a space fractional advection-diffusion equation (FADE) plays a significant role in the mixing and vertical movement of sediment particles in a sediment-laden turbulent flow under non-local effects. Turbulent flow exhibits non-local mixing properties, which leads to the non-Fickian diffusion process that cannot be captured by the traditional diffusion equation. In this work, we present a generalized FADE that includes the generalized fractional differential operator in the Caputo sense. The full analytical solution is proposed utilizing the general Laplace transformation method. This generalized solution contains weight and scale functions and includes the effects of non-locality. It has been shown that several existing famous models of suspension concentration distribution for sediment particles (including both type-I and type-II distributions) in turbulent flows can be obtained from the proposed generalized solution with proper choices of the scale and weight functions in particular. Here a total of fourteen different types of concentration distribution equations including type-I and type-II profiles are derived from the general solution. Further possible generalizations of the model are also discussed which are more useful for practical applications. It is found that the several existing sediment distribution models are equivalent up to choices of weight and scale functions. Further, we found that the scale function could be physically related to the characteristic Lagrangian length of sediment mixing. The choice of the scale and weight function for both the type-I and type-II profiles are discussed and analyzed. Finally, the model is validated with experimental data as well as field data from the Missouri River, Mississippi River, and Rio Grande conveyance channels, and in each case, satisfactory agreements are obtained. These suggest the broader applicability of the present study.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3