Sequential decay analysis of 235U(nth, f ) reaction using fragmentation approach

Author:

Sharma Nitin,Kaushik Ashutosh,Sharma Manoj K.

Abstract

Abstract Numerous experimental and theoretical observations have concluded that the probability of the three fragment emission (ternary fission) or binary fission increases when one proceeds towards the heavy mass region of nuclear periodic table. Many factors affect fragment emission, such as the shell effect, deformation, orientation, and fissility parameter. Binary and ternary fissions are observed for both ground and excited states of the nuclei. The collinear cluster tripartition (CCT) channel of the U(n , f) reaction is studied, and we observe that the CCT may be a sequential or simultaneous emission phenomenon. To date, different approaches have been introduced to study the CCT process as a simultaneous or sequential process, but the decay dynamics of these modes have not been not fully explored. Identifying the three fragments of the sequential process and exploring their related dynamics using an excitation energy dependent approach would be of further interest. Hence, in this study, we investigate the sequential decay mechanism of the U(n , f) reaction using quantum mechanical fragmentation theory (QMFT). The decay mechanism is considered in two steps, where initially, the nucleus splits into an asymmetric channel. In the second step, the heavy fragment obtained in the first step divides into two fragments. Stage I analysis is conducted by calculating the fragmentation potential and preformation probability for the spherical and deformed choices of the decaying fragments. The most probable fragment combination of stage I are identified with respect to the dips in the fragmentation structure and the corresponding maxima of the preformation probability ( ). The light fragments of the identified decay channels (obtained in step I) agree closely with the experimentally observed fragments. The excitation energy of the decay channel is calculated using an iteration process. The excitation energy is shared using an excitation energy dependent level density parameter. The obtained excitation energy of the identified heavy fragments is further used to analyze the fragmentation, and the subsequent binary fragments of the sequential process are obtained. The three identified fragments of the sequential process agree with experimental observations and are found near the neutron or proton shell closure. Finally, the kinetic energy of the observed fragments is calculated, and the middle fragment of the CCT mechanism is identified.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3