Atomic mass, Bjorken variable, and scale dependence of quark transport coefficient in Drell-Yan process for proton incident on nucleus*

Author:

Xu Wei-Jie,Bai Tian-Xing,Duan Chun-Gui

Abstract

Abstract By means of the nuclear parton distributions determined without the fixed-target Drell-Yan experimental data and the analytic expression of quenching weight based on the BDMPS formalism, next-to-leading order analyses were performed on the Drell-Yan differential cross section ratios from the Fermilab E906 and E866 collaborations. It was found that the results calculated only with the nuclear effects of the parton distribution were not in agreement with the E866 and E906 experimental data. The incoming parton energy loss effect cannot be ignored in the nuclear Drell-Yan reactions. The predicted results indicate that, with the quark transport coefficient as a constant, the suppression due to the target nuclear geometry effect is approximately % for the quark transport coefficient. It was shown that we should consider the target nuclear geometry effect in studying the Drell-Yan reaction on nuclear targets. On the basis of the Bjorken variable and scale dependence of the quark transport coefficient, the atomic mass dependence was incorporated. The quark transport coefficient was determined as a function of the atomic mass, Bjorken variable , and scale by the global fit of the experimental data. The determined constant factor of the quark transport coefficient is GeV /fm. It was found that the atomic mass dependence has a significant impact on the constant factor in the quark transport coefficient in cold nuclear matter.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3