Low-temperature properties of magnetically frustrated rare-earth zirconates A 2Zr2O7

Author:

Vojtasová D,Staško D,Hájek FORCID,Colman R HORCID,Klicpera MORCID

Abstract

Abstract Rare-earth A 2Zr2O7 zirconates have attracted considerable attention of the scientific community for their complex magnetic, electronic and material properties applicable in modern technologies. The light rare-earth members of the series, crystallising in the pyrochlore variant of cubic crystal structure, have been studied in detail. The heavier A 2Zr2O7 compounds have been investigated mainly from the material properties viewpoint, focussing on their thermal properties and stability at high temperature and pressure. Low-temperature studies were mostly missing until recently. We present the low-temperature magnetic and thermodynamic properties of A 2Zr2O7 with A = Y, La, Nd, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu, well covering the whole series, newly synthesised by high-temperature sintering and melting methods. X-ray diffraction reveals and confirms the ordered pyrochlore structure in the light members, the disordered cubic structure of the defect-fluorite type in A 2Zr2O7 with A = Y, Gd–Yb, and finally the lower symmetry rhombohedral structure in the end-member Lu2Zr2O7. The specific heat of the investigated compounds is dominated by a low-temperature anomaly associated with magnetic ordering: long-range in light rare-earth zirconates; and short-range in heavier members. The effective magnetic moment in the studied compounds, determined by fitting the magnetisation data to the Curie–Weiss formula, is in good agreement with the expected value of the A 3+ free ion. The magnetic properties have been revealed to be strongly influenced by the geometric frustration of the magnetic moments of both the pyrochlore structure, as well as the face centred cubic lattice created by the cations of the defect-fluorite structure, but connected also to intrinsic atomic disorder. The experimental results are discussed in the framework of previous studies on A 2Zr2O7 zirconates, as well as other A 2 B 2O7 compounds.

Funder

Grant Agency of the Charles University

Czech Research Infrastructures

Czech Science Foundation

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3