Abstract
Abstract
Recent theoretical studies have demonstrated that the behaviour of molecular knots is a sensitive indicator of polymer structure. Here, we use knots to verify the ability of two state-of-the-art algorithms—configuration assembly and hierarchical backmapping—to equilibrate high-molecular-weight (MW) polymer melts. Specifically, we consider melts with MWs equivalent to several tens of entanglement lengths and various chain flexibilities, generated with both strategies. We compare their unknotting probability, unknotting length, knot spectra, and knot length distributions. The excellent agreement between the two independent methods with respect to knotting properties provides an additional strong validation of their ability to equilibrate dense high-MW polymeric liquids. By demonstrating this consistency of knotting behaviour, our study opens the way for studying topological properties of polymer melts beyond time and length scales accessible to brute-force molecular dynamics simulations.
Funder
European Cooperation in Science and Technology
Ministero dell'Istruzione, dell'Università e della Ricerca
Deutsche Forschungsgemeinschaft
Leverhulme Trust
European Union Horizon 2020 research and innovation program
Subject
Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献