Abstract
Abstract
The structural and vibrational properties of two polymorphs of TiO2, rutile and anatase, have been investigated by first-principles methods at different levels of exchange-correlational (XC) energy functionals in density functional theory (DFT). Reports in the literature to date are contradictory regarding the stability of the rutile phase using DFT XC-functionals more sophisticated than simple local-density approximation. Here the PBEsol generalized gradient approximation (GGA), TPSS meta-GGA, and HSE06 hybrid functionals have been employed to demonstrate the XC-functional effects on the calculated structural, phonon and thermodynamic properties of rutile and anatase TiO2. Lattice and elastic parameters correctly calculated with these XC-functionals show good agreement with the experimental values. Calculated phonon frequencies generated stable phonon dispersion relations for both rutile and anatase TiO2 when correctly converged, in agreement with the experimental observations. The phonon frequencies along high symmetry Brillouin zone paths and their corresponding phonon density of states showed sensitivity to different levels of XC-functional employed in phonon dispersion prediction. Nevertheless, the thermodynamic properties of rutile and anatase TiO2 estimated by harmonic approximations are in excellent experimental agreement and are effectively invariant to the level of theory employed in the DFT XC-functional.
Funder
Australian National University
NCI National Facility
Australian Research Council
Australian Government
Subject
Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献