Exploring fracture of H-BN and graphene by neural network force fields

Author:

Shi Pengjie,Xu ZhipingORCID

Abstract

Abstract Extreme mechanical processes such as strong lattice distortion and bond breakage during fracture often lead to catastrophic failure of materials and structures. Understanding the nucleation and growth of cracks is challenged by their multiscale characteristics spanning from atomic-level structures at the crack tip to the structural features where the load is applied. Atomistic simulations offer ‘first-principles’ tools to resolve the progressive microstructural changes at crack fronts and are widely used to explore the underlying processes of mechanical energy dissipation, crack path selection, and dynamic instabilities (e.g. kinking, branching). Empirical force fields developed based on atomic-level structural descriptors based on atomic positions and the bond orders do not yield satisfying predictions of fracture, especially for the nonlinear, anisotropic stress–strain relations and the energy densities of edges. High-fidelity force fields thus should include the tensorial nature of strain and the energetics of bond-breaking and (re)formation events during fracture, which, unfortunately, have not been taken into account in either the state-of-the-art empirical or machine-learning force fields. Based on data generated by density functional theory calculations, we report a neural network-based force field for fracture (NN-F3) constructed by using the end-to-end symmetry preserving framework of deep potential—smooth edition (DeepPot-SE). The workflow combines pre-sampling of the space of strain states and active-learning techniques to explore the transition states at critical bonding distances. The capability of NN-F3 is demonstrated by studying the rupture of hexagonal boron nitride (h-BN) and twisted bilayer graphene as model problems. The simulation results elucidate the roughening physics of fracture defined by the lattice asymmetry in h-BN, explaining recent experimental findings, and predict the interaction between cross-layer cracks in twisted graphene bilayers, which leads to a toughening effect.

Funder

National Key Basic Research Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3