Abstract
Abstract
In this paper the excitations of collective electronic modes and currents induced in nanostructured semiconductor systems by two-mode quantum light with non-zero orbital angular momenta are investigated. Transfer of photon correlations to the excitations and currents induced in the semiconductor system is demonstrated. Birth of correlated electrons arising in the conduction band of the nanostructure due to the interaction with correlated photons of quantum light is found. Azimuthal and radial spatial distributions of the entangled electrons are established. The obtained results make possible to register the correlated electrons experimentally and to implement quantum information and nanoelectronics circuits in nanosystems using the found azimuthal and radial electron entanglement.
Funder
Russian Science Foundation (RSF) and the Deutsche Forschungsgemeinschaft
Subject
Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献