Abstract
Abstract
Emerging materials, particularly nanomaterials, constitute an enduring focal point of scientific inquiry, with quantum dots being of particular interest. This investigation is centered on elucidating the exceptional structural, electromagnetic, and optical characteristics of hexagonal boron nitride (h-BN) quantum dots and h-BN quantum dots doped with carbon (C) and germanium (Ge). The employed methodology in this study hinges on density functional theory coupled with the Vienna Ab initio simulation package. The outcomes of this research unveil the structural stability of hexagonal honeycomb structures upon optimization. Comprehensive examinations encompassing structural properties, electromagnetic characteristics, and charge density variations have been systematically conducted. Furthermore, this work delves into the elucidation of multi-orbital hybridizations that give rise to σ bonds and π bonds. Notably, the outcomes of the optical property analysis divulge intriguing observations. Specifically, the absorption coefficient exhibits zero values within select energy ranges within the visible light spectrum, a phenomenon observed in both pristine and C-doped configurations. This discovery underscores the material’s optical transparency at these specific radiation energies. Additionally, the 0x and 0y components of the dielectric function display negative values across particular energy ranges, a characteristic that holds significant promise for potential applications in nanotechnology communications, offering minimal energy loss.