Abstract
Abstract
As a third-generation semiconductor, silicon carbide power devices are expected to be superior to those made of silicon because of their high voltage resistance, low loss, and high efficiency. So understanding the technology for polishing wafers of silicon carbide is important, which includes studying the structure of the liquid on the surface of silicon carbide. Using molecular dynamics based on Lennard-Jones field, the structure of a water film contained within two silicon carbide (〈001〉 and 〈110〉) walls was analyzed, and found that layers of water appear and change depending on the distance between the two walls. When a double-layer water structure forms, it is affected by the temperature and shear velocity. The conclusion is that when the temperature increases or the shear velocity increases, the double-layer water structure easily transforms into a single-layer water structure, and the pressure between the two solid surfaces gradually falls and may even become negative. This phenomenon significantly depends on the distance between the two silicon carbide walls.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献