Abstract
Abstract
The application of half-metallic materials in single-molecule optoelectronic devices opens a promising way in advancing device performance and functionality, thus addressing a research question of significance. Here we propose a series of single-molecule devices with half-metallic FeN4-doped armchair graphene nanoribbon as electrodes and metalloporphyrin (MPr) molecules as photoresponsive materials for photon harvesting, which are driven by photogalvanic effects (PGEs). Through the quantum transport simulations, we systematically investigated the spin-polarized photocurrents under the linearly polarized light illumination in these devices. Since the exclusive opening only exists in the spin-up channel of the half-metallic nanoribbons, these devices can generate a large photocurrent in the spin-up direction whereas suppressing the spin-down photocurrent. Consequently, they exhibit an effective spin-filtering effect at numerous photon energies. Our study unveils the excellent spin-filtering effect achieved in single-molecule optoelectronic devices with half-metallic electrodes, showing instructive significance for the future design of new optoelectronic devices.
Funder
Natural Science Foundation of Sichuan Province