Improvement of leakage, magnetic and magnetodielectric properties in cobalt doped gallium ferrite

Author:

Jana IshitaORCID,Hait SwarnaliORCID,Mandal KalyanORCID

Abstract

Abstract Gallium ferrite (GFO) is a magnetoelectric (ME) material, capturing growing attention due to its strong ME coupling at room temperature. However, the application of the material in practical use is hindered due to its high leakage. In this work, the effects of cobalt (Co) substitution at the iron (Fe) sites of GaFe1−x Co x O3 (0.0 ⩽ x ⩽ 0.1) polycrystals on the structure, electric and magnetic properties are investigated in detail. 5 at. wt.% substitution (x = 0.05) with cobalt ions achieves a reduction in leakage current density by four orders of magnitude due to reduced hopping between Fe3+ and Fe2+ ions and suppression of the oxygen vacancy formation. This is supported by higher dielectric constant and lower dielectric loss, as well as a significant difference between grain and grain boundary resistances. Two-phase-like magnetic behavior in magnetic hysteresis loop with enhanced magnetization and two magnetic transition temperatures are observed in the doped samples. All samples exhibited an increase in the magnetodielectric factor, indicating enhanced coupling between magnetic and electrical parameters. By concurrently increasing dielectric, magnetic, and coupling between them, this study describes a viable technique for lowering the most significant impediment to GFO’s usage as a ME device.

Funder

S. N. Bose National Centre for Basic Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3