A quantitative criterion for predicting solid-state disordering during high strain rate deformation

Author:

Becker Michael FORCID,Kovar DesiderioORCID

Abstract

Abstract A quantitative criterion for predicting the onset of disordering during high strain rate deformation is defined that is based on the potential energy (PE) per atom (PE/atom). The criterion is a necessary, but not sufficient condition to predict disorder. The stress state and loading direction of the crystal must allow deviatoric displacements that can induce disordering and the strain rate must be sufficiently high. The criterion is tested using molecular dynamics (MD) simulations for Ag over a range of a stress states and loading directions relative to the crystal axis. It is found that, above a minimum PE per atom of −2.70 ± 0.01 eV/atom, the crystal becomes unstable and disorders at temperatures well below the equilibrium melting temperature. This criterion is found to be independent of stress state and loading direction, and results suggest that it can be applied broadly to other material systems and to scenarios where deformation is non-uniform and time dependent. An example is given for its application to Au in shear. We show that the minimum critical PE for disordering under high strain rate loading is estimated by finding the equilibrium PE per atom at melting, which can be obtained from a single MD simulation for each material. An example is provided that illustrates how PE/atom can be used to predict where a simulated system is with respect to the disordering threshold without conducting multiple simulations.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3