Observed metallization of hydrogen interpreted as a band structure effect

Author:

Dogan MehmetORCID,Oh SehoonORCID,Cohen Marvin LORCID

Abstract

Abstract A recent experimental study of the metallization of hydrogen tracked the direct band gap and vibron frequency via infrared measurements up to ∼425 GPa (Loubeyre et al (2020 Nature 577 631). Above this pressure, the direct gap has a discontinuous drop to below the minimum experimentally accessible energy (∼0.1 eV). The authors suggested that this observation is caused by a structural phase transition between the C2/c-24 molecular phase to another molecular phase such as Cmca-12. Here, through ab initio calculations of pressure dependent vibron frequency and direct band gap, we find that the experimental data is consistent with the C2/c-24 phase up to 425 GPa, and suggest that this consistency extends beyond that pressure. Specifically, we find that qualitative changes in the band structure of the C2/c-24 phase lead to a discontinuous drop of the direct band gap, which can explain the observed drop without a structural transition. This alternative scenario, which naturally explains the absence of hysteresis in the measurements, will hopefully motivate further experimental studies to ascertain the structure of the phase above the high pressure ‘phase transition’.

Funder

Division of Materials Research

Basic Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3