Dynamic interplay between thionine and DNA under carbon ion irradiation: a real-time first-principles study

Author:

Deng Zun-Yi,Hu Zhihua,Feng Hong-JianORCID

Abstract

Abstract Understanding the interactions between deoxyribonucleic acid (DNA) and photosensitizer under ion irradiation benefits the development of aptasensors, DNA biosensors and cancer diagnosis. Using real-time time-depended density functional theory, by simulating high-energy C ion passing through DNA with poly(dG)·poly(dC) sequence and that with embedded thionine (3,7-diamino-5-phenothiazinium, TH), we compared the electronic stopping power (ESP), evolution of the structure and charge, and absorption spectrum. TH inserting leads the increase in space charge density, a larger electron de-excitation and a larger ESP, but the speed corresponding to the maximum ESP is almost same. When C ion passes through TH–DNA, the structure of TH slightly changes and there still exists noncovalent interaction between TH and DNA, but the absorption coefficient depends on the electron occupied state of TH when the ion passes through. These results indicate that at low radiation doses, TH still can be a DNA detector, although its response wavelength and intensity have been slightly changed, and provide a theoretical reference to improve the possible application of phenothiazine dye in DNA biosensor under ion irradiation.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3