Microstructural mechanisms of hysteresis and transformation width in NiTi alloy from molecular dynamics simulations

Author:

Plummer GabrielORCID,Mendelev Mikhail IORCID,Benafan OthmaneORCID,Lawson John W

Abstract

Abstract Martensitic transformations in shape memory alloys are often accompanied by thermal hysteresis, and engineering this property is of prime scientific interest. The martensitic transformation can be characterized as thermoelastic, where the extent of the transformation is determined by a balance between thermodynamic driving force and stored elastic energy. Here we used molecular dynamics simulations of the NiTi alloy to explore hysteresis-inducing mechanisms and thermoelastic behavior by progressively increasing microstructural constraints from single crystals to bi-crystals to polycrystals. In defect-free single crystals, the austenite-martensite interface moves unimpeded with a high velocity. In bi-crystals, grain boundaries act as significant obstacles to the transformation and produce hysteresis by requiring additional nucleation events. In polycrystals, the transformation is further limited by the thermoelastic balance. The stored elastic energy can be converted to mechanisms of non-elastic strain accommodation, which also produce hysteresis. We further demonstrated that the thermoelastic behavior can be controlled by adjusting microstructural constraints.

Funder

Aeronautics Research Mission Directorate

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3