Temperature-dependent near-surface interstitial segregation in niobium

Author:

Dalla Lana Semione GuilhermeORCID,Vonk VedranORCID,Pandey Arti Dangwal,Grånäs ElinORCID,Arndt Björn,Wenskat MarcORCID,Hillert Wolfgang,Noei HeshmatORCID,Stierle AndreasORCID

Abstract

Abstract Niobium’s superconducting properties are affected by the presence and precipitation of impurities in the near-surface region. A systematic wide-temperature range x-ray diffraction study is presented addressing the effect of low temperatures (108 K–130 K) and annealing treatments (523 K in nitrogen atmosphere, 400 K in UHV) on the near-surface region of a hydrogen-loaded Nb(100) single-crystal. Under these conditions, the response of the natural surface oxides (Nb2O5, NbO2, and NbO) and the changes in the subsurface concentration of interstitial species in Nb are explored, thereby including the cryogenic temperature regime relevant for device operation. The formation and suppression of niobium hydrides in such conditions are also investigated. These treatments are shown to result in: (i) an increase in the concentration of interstitial species (oxygen and nitrogen) occupying the octahedral sites of the Nb bcc lattice at room temperature, both in the near-surface region and in the bulk. (ii) A decrease in the concentration of interstitials within the first 10 nm from the surface at 130 K. (iii) Hydride formation suppression at temperatures as low as 130 K. These results show that mild annealing in nitrogen atmosphere can suppress the formation of superconducting-detrimental niobium hydrides, while subsurface interstitial atoms tend to segregate towards the surface at 130 K, therefore altering the local concentration of impurities within the RF penetration depth of Nb. These processes are discussed in the context of the improvement of niobium superconducting radio-frequency cavities for next-generation particle accelerators.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3