Abstract
Abstract
We develop a fully quantum theoretical approach which describes the dynamics of Frenkel excitons and bi-excitons induced by few photon quantum light in a quantum well or wire (atomic chain) of finite lateral size. The excitation process is found to consist in the Rabi-like oscillations between the collective symmetric states characterized by discrete energy levels. At the same time, the enhanced excitation of high-lying free exciton states being in resonance with these ‘dressed’ polariton eigenstates is revealed. This found new effect is referred to as the formation of Rabi-shifted resonances and appears to be the most important and new feature established for the excitation of 1D and 2D nanostructures with final lateral size. The found new physics changes dramatically the conventional concepts of exciton formation and play an important role for the development of nanoelectronics and quantum information protocols involving manifold excitations in nanosystems.
Funder
Russian Science Foundation
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献