Abstract
Abstract
Carrier and lattice relaxation after optical excitation is simulated for the prototypical wide-bandgap semiconductors CuI and ZnO. Transient temperature dynamics of electrons, holes as well as longitudinal-optic (LO), transverse-optic (TO) and acoustic phonons are distinguished. Carrier-LO-phonon interaction constitutes the dominant energy-loss channel as expected for polar semiconductors and hot-phonon effects are observed for strong optical excitation. Our results support the findings of recent time-resolved optical spectroscopy experiments.
Subject
Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献