Dynamic characteristics of multi-arc thermal plasma in four types of electrode configurations

Author:

ZHAO Yanjun,NI Guohua,LIU Wei,SUN Hongmei,SUI Siyuan,LI Dongdong,ZHENG Huan,MA Zhongyang,ZHANG Chi

Abstract

Abstract The enhanced volume of thermal plasma is produced by a multi-arc thermal plasma generator with three pairs of discharge electrodes driven by three directed current power suppliers. Combined with a high-speed camera and an oscilloscope, which acquire optical and electric signals synchronously, the dynamic behavior of different kinds of multi-arc discharge adjusted by the electrode arrangement is investigated. Also, the spatial distributions and instability of the arc discharge are analyzed in four electrode configurations using the gray value statistical method. It is found that the cathodic arcs mainly show a contracting state, while the anodic arcs have a trend of transition from shrinkage to a diffusion-like state with the increase of the discharge current. As a result of the adjustment of the electrode configuration, a high temperature region formed in the center of the discharge region in configurations of adjacent electrodes with opposite flow distribution and opposite electrodes with swirl flow distribution due to severe fluctuation of arcs. The discharge voltage rises with increased discharge current in this novel multi-arc plasma generator. It is also found that anode ablation mainly occurs on the conical surface at the copper electrode tip, while cathode erosion mainly occurs on the surface of the inserted tungsten and the nearby copper.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3