The effects of inner electrode shape on the performance of dielectric barrier discharge reactor for oxidative removal of NO and SO2

Author:

CAI 蔡 Yunkai 云凯,HUANG 黄 Bingfeng 兵锋,DONG 董 Fei 飞,ZHU 祝 Neng 能

Abstract

Abstract Seagoing vessels are responsible for more than 90% of global freight traffic, but meanwhile, emission pollutants (NO x and SO x ) of seagoing vessels also cause serious air pollution. Nonthermal plasma (NTP) combined with wet scrubbing technology is considered to be a promising technology. In order to improve the oxidation efficiency and energy efficiency of the NTP reactor, the screw and rod inner electrodes of dielectric barrier discharge (DBD) reactor were investigated. To analyze the mechanism, the optical emission spectra (OES) of NTP were measured and numerical calculation was applied. The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode. However, the SO2 removal efficiency of screw electrode is higher. According to the OES experiment and numerical calculation, the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface, and it is easier to generate N radicals to form NO. For the same energy density condition, the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode, but the gas temperature in the discharge gap is higher. Therefore, the SO2 oxidation efficiency of the thread electrode is higher. This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3