Assessing stormwater control measure inventories from 23 cities in the United States

Author:

Choat BenjaminORCID,Pulido Amber,Bhaskar Aditi SORCID,Hale Rebecca LORCID,Zhang Harry X,Meixner ThomasORCID,McPhillips LaurenORCID,Hopkins KristinaORCID,Cherrier JenniferORCID,Cheng ChingwenORCID

Abstract

Abstract Since the 1987 Clean Water Act Section 319 amendment, the US Government has required and funded the development of nonpoint source pollution programs with about $5 billion dollars. Despite these expenditures, nonpoint source pollution from urban watersheds is still a significant cause of impaired waters in the United States. Urban stormwater management has rapidly evolved over recent decades with decision-making made at a local or city scale. To address the need for a better understanding of how stormwater management has been implemented in different cities, we used stormwater control measure (SCM) network data from 23 US cities and assessed what physical, climatic, socioeconomic, and/or regulatory explanatory variables, if any, are related to SCM assemblages at the municipal scale. Spearman’s correlation and Wilcoxon rank-sum tests were used to investigate relationships between explanatory variables and SCM types and assemblages of SCMs in each city. The results from these analyses showed that for the cities assessed, physical explanatory variables (e.g. impervious percentage and depth to water table) explained the greatest portion of variability in SCM assemblages. Additionally, it was found that cities with combined sewers favored filters, swales and strips, and infiltrators over basins, and cities that are under consent decrees with the Environmental Protection Agency tended to include filters more frequently in their SCM inventories. Future work can build on the SCM assemblages used in this study and their explanatory variables to better understand the differences and drivers of differences in SCM effectiveness across cities, improve watershed modeling, and investigate city- and watershed-scale impacts of SCM assemblages.

Funder

National Science Foundation

Agricultural Research Service

Publisher

IOP Publishing

Subject

General Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3