Assessing uncertainty in building material emissions using scenario-aware Monte Carlo simulation

Author:

Bin Thaneya AhmadORCID,Gursel Aysegul PetekORCID,Kane SethORCID,Miller Sabbie AORCID,Horvath ArpadORCID

Abstract

Abstract Global greenhouse gas emissions from the built environment remain high, driving innovative approaches to develop and adopt building materials that can mitigate some of those emissions. However, life-cycle assessment (LCA) practices still lack standardized quantitative uncertainty assessment frameworks, which are urgently needed to robustly assess mitigation efforts. Previous works emphasize the importance of accounting for the three types of uncertainties that may exist within any quantitative assessment: parameter, scenario, and model uncertainty. Herein, we develop a quantitative uncertainty assessment framework that distinguishes between different types of uncertainties and suggest how these uncertainties could be handled systematically through a scenario-aware Monte Carlo simulation (MCS). We demonstrate the framework’s decision-informing power through a case study of two multilevel ordinary Portland cement (OPC) manufacturing scenarios. The MCS utilizes a first-principles-based OPC life-cycle inventory, which mitigates some of the model uncertainty that may exist in other empirical-based cement models. Remaining uncertainties are handled by scenario specification or sampling from developed probability distribution functions. We also suggest a standardized method for fitting distributions to parameter data by enumerating through and implementing distributions based on the Kolmogorov–Smirnov test. The level of detail brought by the high-resolution parameter breakdown of the model allows for developing emission distributions for each process of OPC manufacturing. This approach highlights how specific parameters, along with scenario framing, can impact overall OPC emissions. Another key takeaway includes relating the uncertainty of each process to its contributions to total OPC emissions, which can guide LCA modelers in allocating data collection and refinement efforts to processes with the highest contribution to cumulative uncertainty. Ultimately, the aim of this work is to provide a standardized framework that can provide robust estimates of building material emissions and be readily integrated within any uncertainty assessment.

Funder

Advanced Research Projects Agency - Energy

Publisher

IOP Publishing

Reference88 articles.

1. Global status report for buildings and construction 2019;International Energy Agency (IEA),2019

2. Embodied energy and greenhouse gas emission trends from major construction materials of U.S. office buildings constructed after the mid-1940s;Gursel;Build. Environ.,2023

3. Embodied GHG emissions of buildings—the hidden challenge for effective climate change mitigation;Röck;Appl. Energy,2020

4. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060;Zhong;Nat. Commun.,2021

5. The weight of cities: resource requirements of future urbanization;UNEP—International Resource Panel (IRP),2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3