Facile preparation of lotus seedpod-derived magnetic porous carbon for catalytic oxidation of Ponceau 4R

Author:

Nguyen Minh-Hung,Nguyen Thi-Linh,Nguyen Thi-Kim-Linh,Lam Hoa-Hung,Tran-Thuy Tuyet-Mai,Nguyen Quang-Long,Nguyen Van-Dung

Abstract

Abstract In this research, magnetic porous carbon was directly synthesized through one-step pyrolysis of FeCl3 – lotus seedpod mixture. Properties of the obtained material were analysed by X-ray powder diffraction, SEM image, nitrogen adsorption isotherm and vibrating sample magnetometer. The results showed that magnetic Fe3O4 particles were successfully formed over material template in 1 hour. The magnetic porous carbon possessed the specific magnetization of 7.13 emu/g, high specific surface area of 288 m2/g and total pore volume of 0.18 cm3/g. The material was subsequently applied as a potential catalyst for Ponceau 4R degradation by H2O2. Parameters including pH, H2O2 concentration, and different types of catalysts were investigated. At pH 3, 200 ppm H2O2, and 0.40 g/L magnetic porous carbon, 83% Ponceau 4R 50 ppm was removed after 120 minutes treatment. Moreover, the catalyst powders were separated from the treated mixture easily by a magnet. Summarily, magnetic porous carbon can promise to be an efficient catalyst in decomposition of Ponceau 4R.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3