Numerical Simulation of the Effect of Repeated Load and Waste Polypropylene on the Behavior of Asphalt Layers

Author:

Akram Hind A,Hilal Miami M,Fattah Mohammed Y

Abstract

Abstract Roads are utilized by many vehicle kinds and heavy vehicles among these may be seen as the most essential for cargo loading, causing paving failure and increasing expenses for rehabilitation and maintenance. In this study, in analyzing a finite element employing Abaqus 6.14, composite effects for wheel loads and temperature were addressed. The asphalt layer was designed as an elastic material, while the base and sub-bases were modeled according to the Mohr coulomb model like an elastic material. And studying the impact of wheel loads on flexible pavement settlement and the main output of analyzing pavement structure is almost represented by the vertical stresses and the surface deformation which are considered as the critical response point. A truck type 2S-2 was tried with two thicknesses of asphalt layer 140 mm and 250 mm and considering that base and subbase layer thicknesses remained constant so it does not affect the variation of displacement. It was found that the increase of asphalt layer thickness from 140 mm to 250 mm leads to a decrease in the vertical displacement of about 0.59% and studied the effect of modified asphalt with polymer and how it effect pavement vertical displacement with an obvious reduction from 0.590 mm to 0.265 mm under the repeated load of 36 ton and The vertical stress decreased from 5.036 kPa to 1.899 kPa

Publisher

IOP Publishing

Subject

General Engineering

Reference12 articles.

1. Comparison of Elastic and Viscoelastic Analysis of Asphalt Pavement at High Temperature;Mejłun;Procedia Engineering,2017

2. Combined effect of wheel and thermal load conditions on stress distribution in flexible pavement;Alkaiss;Engineering and Technology Journal, University of Technology,2009

3. Impact of Traffic Overload on Road Pavement Performance;Pais;Journal of Transportation Engineering,2013

4. Influence of Axle Overload on the Performance of Local Flexible Pavement;Albayati

5. Viscoelastic analysis of thickness variation of asphaltic pavements under repeated loading using finite element method;Aarabi;International Journal of Pavement Engineering,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3