Novel resistance control scheme for mitigating current sharing mismatches in parallel dual active bridge converters for DC fast charging stations

Author:

Phuc L.H.,Duc P.M.,Nhuan L.A.,Ly T.T.,Hung N.D.

Abstract

Abstract Dual Active Bridge (DAB) converters have gained popularity in electric vehicle charging stations due to their high efficiency and electrical isolation. As the demand for high-powered devices and large-capacity energy storage systems grows, charging systems that integrate multiple interconnected DAB modules are emerging as a promising solution. However, prolonged operation of these modules at high power levels can cause parameter deviations from the initial DAB circuit, resulting in power variations between modules. To overcome parameter deviations, this study presents an enhanced power control approach based on output resistance adjustment, intending to achieve consistent output capacity for multiple DAB modules. In the proposed enhanced power control method, the output resistance of the DAB module is considered to be controllable, and the current-sharing mismatches among DAB modules are fed back to tune the converter output resistance for mitigating current mismatches between modules. Thanks to the proposed control method, each DAB module can operate autonomously and balance the charging current between modules. When one DAB module is suddenly cut out of the system, the other DAB modules still maintain their stability with fully guaranteed load capacity. To demonstrate the feasibility of the enhanced control approach, the small signal model of the DAB system with three modules is derived together with its frequency-amplitude diagram. Then, the effect of virtual resistance on current balancing is comprehensively tested, and the proper control signal with virtual resistance is added to the DAB voltage control loop. The simulation results have demonstrated the reliability of the proposed control method with the ability to balance the charging current between modules and stabilize the system when a single DAB module fails.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3