Author:
Lee J S,Yeap S P,Wang F,Cheok C Y,Ang C K,Jawad Z A
Abstract
Abstract
Conducting polymers possess inherent electrical conductivity, attracting significant attention in engineering applications, including dye-sensitized solar cells, gas sensors, and energy storage electrodes. Of various conducting polymers, Polyaniline has gained much attention due to its low cost of monomer, ease of bulk synthesis, high flexibility, and good environmental stability. Nevertheless, the conductivity of polyaniline is rather low when it is prepared under an un-doped state. Despite that, there is no clear information regarding how the valency of a metal dopant and its concentration can affect the electrical characteristics and other physicochemical properties of doped polyaniline. This study aims to fill this research gap by elucidating the changes in the electrical characteristics of polyaniline through metal doping. Polyaniline was synthesized through chemical oxidative polymerization in an HCl medium, followed by a post-doping to produce metal-codoped polyaniline. Three dopant materials, namely AgNO3, Cu(NO3)2, and Fe(NO3)3, were used in this synthesis, representing mono-, di-, and tri-valent metal ions, respectively. Results showed that bare PANI (which was doped with HCl only) exhibited a higher electrical conductance value of 8.44 x 10-7 S, while 1 M of Ag-codoped polyaniline, 1 M of Cu-codoped polyaniline, and 1 M of Fe-codoped polyaniline exhibited electrical conductance values of 1.73 x 10-7 S, 4.27 x 10-8 S, and 2.33 x 10-6 S, respectively. Apparently, the trivalent metal dopant was able to improve the conductivity of polyaniline; however, a detrimental effect resulted when the concentration of Fe3+ was increased to 1.5 M (overdose), resulting in a drop in electrical conductance to 4.66 x 10-8 S. In terms of morphological property, Ag-doped polyaniline exhibited a mixture of plate-like and globule-like structures, while both Cu-doped polyaniline and Fe-doped polyaniline predominantly displayed tiny globule-like structures, likely attributed to the stronger acidity of the Cu(NO3)2 and Fe(NO3)3 solutions. Meanwhile, the presence of several common bands of polyaniline such as N-H, C=N, C-H aromatic, quinoid and benzoid units are detected in the produced samples. The project outcomes are expected to guide tailored development of metal-doped polyaniline for specific electrical applications.