Laboratory evaluation of electrokinetic dewatering of dredged marine sediment as an option for climate change adaption

Author:

Malekzadeh M,Sivakugan N

Abstract

Abstract The climate change affects the coastal infrastructure including ports. This effect is through changes in the tides, waves, wind and coastal erosion. As a result, sedimentation in harbours and coastal area increases and therefore there is a need for more regular dredging as well as adaption to climate change to reduce the vulnerability. More frequent dredging means higher amount of dredging sediments need to be disposed or treated. One of the methods to be proposed to reduce the impact of high amount of dredging and reducing the environmental wastes as a by-product of dredging is to reuse or reproduce the dredged sediments. Electrokinetic stabilization is one of the environmentally friendly methods to dewater and strengthen the engineering properties of the soils and dredged sediments. This study investigates the effect of electrokinetic stabilization to improve the engineering properties of the dredged mud as an alternative option to reduce the environmental impact and use of a sustainable method for climate change adaption. Two laboratory designs are tested to determine the most efficient electrokinetic dewatering configuration and to examine the potential use of this method for dewatering and improving dredged mud. Electrokinetic stabilization is a promising method to dewater and expedite the settlement of the dredged marine sediments. However, the placement of electrodes can affect the power consumption and the efficiency of the technique and the resistivity of the soil. Some studies in the literature determine the best electrode configuration to optimize the electrokinetic stabilization. However, a few studies examined the electrode placement for electrokinetic dewatering and sedimentation. This study investigates the effect of electrode placement based on the efficiency of the method depending on power consumption versus dewatering, soil electrical resistivity, the settlement of the sediments, and treatment time. To reduce the energy expenditure first a constant voltage of 20 V is applied and the variation of electric current during the electrokinetic stabilization is monitored. Once the electric current approached zero, the voltage is increased to 30 V. Using constant voltage for both cases of electrode placement (anode on top, cathode at the bottom; anode at the bottom, cathode on top), it was observed that higher efficiency based on dewatering and power consumption is obtained when the cathode is placed on top.

Publisher

IOP Publishing

Subject

General Engineering

Reference37 articles.

1. Electrokinetic remediation: Basics and technology status;Acar;Journal of Hazardous Materials,1995

2. Electrokinetic strengthening of soft clay using the anode depolarization method;Asavadorndeja;Bulletin of Engineering Geology and the Environment,2005

3. Electro-Osmosis in Soils

4. Modification of the properties of salt affected soils using electrochemical treatments;Jayasekera;Geotechnical and Geological Engineering,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3