Exploring Thermal Barrier and Sedimentation Simulation for Enhanced Performance in Grati Combined Cycle Power Plant

Author:

Suntoyo ,Cahya I,Islam M R,Tanaka H

Abstract

Abstract PLTGU is a power generation facility that concurrently utilizes both steam and gas power plant technologies. It necessitates a cooling system to operate efficiently throughout its entire lifespan. If PLTGU Grati plans to increase its power capacity, there is a concern that the water discharged from the Water Outlet channel might not cool down sufficiently before re-entering the Water Intake channel. Additionally, sedimentation in the sea water uptake is causing siltation. Hence, this study focuses on the jetty extension project to address sedimentation and hot water spreading issues in PLTGU Grati. The numerical modeling analysis, conducted using the Delft3D software, indicates that in the case of power addition, Alternative Model 1 can reduce the highest temperature compared to the existing condition by 0.655°C. Similarly, Alternative Model 2 reduces the highest temperature by 0.090°C. Moreover, with power addition, sedimentation rate in Area 1 increases by 261.43 m3/month in Alternative Model 1, while in Alternative Model 2, it decreases by 969.47 m3/month compared to the existing condition. Considering the ability of Alternative Model 2 to effectively reduce the temperature in the inlet canals by 0.090°C, it provides the best solution to contain the spread of hot water in the PLTGU Grati area. Currently, PLTGU Grati employs a Cutter Suction Dredger (CSD) to periodically dredge the water inlet channel. Therefore, Alternative Model 2 is recommended as the optimal choice among the alternatives. Henceforth, detailed studies related to current patterns and sedimentation rates are presented comprehensively in this paper.

Publisher

IOP Publishing

Reference20 articles.

1. A general formula for non-cohesive bed load sediment transport;Camenen;Estuarine, Coastal and Shelf Science,2005

2. Characteristics of turbulent boundary layers over a rough bed under saw-tooth waves and its application to sediment transport;Suntoyo;Coastal Engineering,2008

3. Effect of bed roughness on turbulent boundary layer and net sediment transport under asymmetric waves;Suntoyo;Coastal Engineering,2009

4. Bottom shear stress and bed load sediment transport due to irregular wave motion;Suntoyo;ARPN J. Eng. Appl. Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3