Author:
Adedeji A R,Dagar L,Petra M I,Silva L C De
Abstract
Abstract
In this paper, WRF-Chem model response to horizontal resolution has been presented in simulating tropospheric ozone distribution during an intense biomass burning across Southeast Asia. Model resolution is varied between 100 km and 20 km. Enhanced fire emissions were also considered in the 20 km resolution simulation. Evaluations were made against observed meteorology such as temperature, relative humidity, wind speed and direction. Spatio-temporal distribution of ozone precursors such as NO2 and CO at the surface retrieved from OMI and MOPITT instruments respectively, were compared against model outputs. Ozonesonde datasets for ozone profile from SHADOZ campaign at Watukosek-Java, Hanoi and Kuala Lumpur were used in evaluating simulated results. All the model simulations adequately represented the observed meteorology. Except in Watukosek-Java where ozone levels were overrepresented, the levels in other locations such as Kuala Lumpur and Hanoi were captured adequately. For model simulations using low-resolution, high-resolution and high-resolution with enhanced fire emissions in Hanoi, Kuala Lumpur and Watukosek-Java region, normalized bias factors are around -0.06, 0.14 and 0.22; 0.01, 0.28 and 0.18, and; 1.20, 3.36 and 3.21, respectively. Normalized root mean square error obtained is as low as 0.09 in Hanoi, and as high as 1.02 in Watukosek-Java region.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献