Multi-response optimization of cellulose fiber isolation from tapioca solid waste and its characteristics

Author:

Arnata I W,Harsojuwono B A,Hartiati A,Gunam I B W,Anggreni A A M D,Sartika D

Abstract

Abstract The tapioca-based starch industry produces solid waste in abundance that has not been used optimally, especially the cellulose fraction. This study aimed to optimize the H2O2 concentration and the process temperature of cellulose fiber isolation from tapioca solid waste. Statistical regression modeling and optimization of H2O2 concentration and process temperature using the response surface methodology. A central composite design (CCD) was applied for experimental design and analysis of the effect of H2O2 concentration and process temperature on multi-response characteristics of cellulose, consisting of whiteness index (WI), yield, and α-cellulose content. Cellulose fibers were characterized, including surface morphology, crystallinity degree, and thermal stability. The results showed that the H2O2 concentration and process temperature were significantly affected by WI, yield, and α-cellulose content. The maximum WI, yield, and α-cellulose content were 63.99%, 65.73% (w/w), and 78.31% (w/w), respectively, obtained from H2O2 concentration of 22.62% (v/v) and process temperature of 93.51ºC. This cellulose has a relatively coarse fiber formation, with a high degree of crystallinity and thermal stability. Thus, cellulose from TSW might have a potential to be applied in broader fields.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3