Recovery of Au, Ag and Cu from printed circuit board leachate using activated carbon derived from foxtail fruit

Author:

Nik Yusoff N R,Maizatul N N

Abstract

Abstract Printed circuit boards (PCBs) are the e-waste generated from the end-of-life electronic equipment such as laptops and mobile phone. PCBs contain various metals including precious metals (gold, silver, copper) and detrimental heavy metals as well (arsenic, mercury) [9]. Recycling of e-waste is potentially to be one of the best mechanisms to overcome the human and environmental health threat hence, the valuable metals can be recovered and could avoid the depletion of our ore resources. In this paper, hydrometallurgical process on PCBs was carrying out to recover the precious metals. The PCBs were immersed into aqua regia leaching solution and later the targeted metals were leached out and extracted using activated carbon through adsorption process. The precious metals were then recovered by desorbing the spent activated carbon using hydrochloric acid (HCl) as desorbing agent. In this study, foxtail palm fruit was used to produce activated carbon for metals recovery process. Therefore, the objective of this study was to evaluate the efficiency of the prepared activated carbon derived from foxtail fruit for the recovery of Au, Ag and Cu contain in the PCB leachate. The effect of adsorbent dosage (1, 2, 3, 4, 5g), contact time (20, 40, 60, 80, 100 min) and desorption process of spent activated were investigated. The characterization of the prepared activated carbon was determined using field emission scanning electron microscope (FESEM) whereas the PCBs leachate solution before and after metal recovery process were quantified using flame atomic absorption spectrophotometer (FAAS). The obtained result showed that, the adsorption percentage of Au, Ag and Cu at high adsorbent dosage (5g) with longer contact time (100 min) were 65.51%, 30.30% and 62.51% respectively. However, the attained result for desorption percentage of the metals recovery for Au, Ag and Cu were recorded to be higher at shorter contact time (20 min) as the spent activated carbon could deteriorate at longer contact time with concentrated HCl. The percentage recovery values for 20 minutes desorption process were 99.77% (Au) when 5g of activated carbon was used, whilst 97.41% (Ag) and 98.83% (Cu) were obtained when 2g of activated carbon were applied, respectively. Thus, it can be concluded that the adsorption of Au, Ag and Cu were greater when higher dosage of activated carbon and longer contact time were applied. Meanwhile, shorter contact time were needed to recover the metals. Therefore, this study could be one of the finding in safeguarding our environment by minimizing the e-waste pollution as well as practicing metal recycling in community.

Publisher

IOP Publishing

Subject

General Engineering

Reference21 articles.

1. A review of technology of metal recovery from electronic waste. Chapter in book of e-waste in transition-from pollution to resource;Ari,2016

2. Preparation and characterization of activated carbon from typha orientalis leaves;Anisuzzaman;Int. J. Ind. Chem.,2014

3. Health effect of exposure to e-waste;Brune;Lancet.,2013

4. Kinetic studies of adsorption and desorption of South African fly ash for some phenolic compound;Bada;Part. Sci. Technol.,2013

5. Desorption of heavy metals from metal loaded sorbents and e-wastes: A review;Chatterjee;Biotechnol. Lett.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3