Near-Infrared Reflectance Spectroscopy (NIRS) detection to differentiate morning and afternoon milk based on nutrient contents and fatty acid profiles

Author:

Oktavianti B P,Despal ,Toharmat T,Rofiah N,Zahera R

Abstract

Abstract Milking time is one of the factors that affect milk quality. The objective of this study was to differentiate morning milk from afternoon based on milk fatty acid profile and create a prediction model using Near-Infrared Reflectance Spectroscopy (NIRS). This study used explorative research and post-observation analysis. Milk sampling was collected from three different dairy farm locations in West Java Provinces (Pangalengan district of Bandung Regency, Cibungbulang District of Bogor Regency, and Tanah Sareal District of Bogor Municipality). Milk quality observed in this study included milk fat, protein, lactose, solid non-fat (SNF), and fatty acid compositions. Milk fat, protein, lactose, and SNF were analyzed using Lactoscan. Fatty acid compositions were identified using gas chromatography (GC). Sample spectrums were collected using NIRSflex 500. The difference between morning and afternoon milking was tested using a t-test carried out by SPSS ver. 25. Qualitative calibration of milk quality was conducted using NIRSCal v5.6 by applying the cluster (CLU) method. The results from lactoscan and GC showed that milk fat, caprylic acid, and myristoleic acid, and total SFA were significantly different (Sig. (2-tailed) < 0.05) in morning and afternoon milk. However, NIRS failed to generate a sophisticated model for the milk quality differentiation, which shows a low Q-value (0.0011231). The quantitative analysis accurately produced milk fat and total SFA predictions but failed to accurately predict caprylic acid and myristoleic acid. This study concluded that morning milk could be differentiated from afternoon milk based on milk fat, caprylic acid, myristoleic acid, and total SFA content. The NIRS technology can differentiate between morning and afternoon milk based on quantitative calibration of total fat and SFA.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3