A Semantic Segmentation Method for Dam Leakage Detection Based on FCN

Author:

Zhang Jun,Yan Zhaohui,Ma Xinlong,Cai Xingguo

Abstract

Abstract Leakage is an important factor affecting the safety of the dam. In the past, manual inspection is a significant way to monitor leakage risk. However, it is time-consuming, inefficient and difficult to quantitative evaluate such as the leakage area. A semantic segmentation method based on the fully convolutional network is proposed to replace the manual inspection for the dam leakage automatic detection. Thirty-eight high-resolution images of dam leakage are collected. FCN-8s and VGG16 backbone are adopted. The results indicated that the FCN-8s achieves the mIoU to 0.59 on the test set, which proves to be an efficient way to detect the dam leakage.

Publisher

IOP Publishing

Subject

General Engineering

Reference6 articles.

1. Research on seepage field of concrete dam foundation based on artificial neural network;Zhang,2020

2. Analysis of dam Leakage hazards and Treatment Measures;Tan;Heilongjiang Science and Technology Information,2008

3. A new method for dynamically estimating long-term seepage failure frequency for high concrete faced rockfill dams;Deng,2020

4. Study on leakage characteristics of reservoir dams;Tan;Dam and Safety,2019

5. Fully convolutional networks for semantic segmentation;Long,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3