Performance analysis of dual-stage vertical axis hydrokinetic turbine (VAHT) with azimuth variation at open canal hydrokinetic power plant

Author:

Hantoro R,Septyaningrum E,Nugroho G,Alam M F A,Fawwaz M D,Alfarisyi F D,Alfarizi M I,Prasetyo R A

Abstract

Abstract For several decades, the use of hydropower generation using hydrokinetic turbines has grown rapidly, aiming to get energy alternatives and reduce the dependency on fossil energy. Despite it has low efficiency, the vertical axis hydrokinetic turbine (VAHT) has been used to utilize hydro energy and has a promising result. A previous study had stated that the utilization of cascaded blade enhances the performance of VAHT. However, this technology produces fluctuating torque and power during its rotation. Hence the dual-stage VAHT is proposed to overcome this issue to improve VAHT’s efficiency. This research analyzes the dual-stage VAHT’s performances by variating its inter-stage azimuth of 45°, 60°, 75°, and 90°. For each stage, there is six blades that attach at three arms. The computational fluid dynamics (CFD) simulation is employed as its capability to provide in-depth information regarding flow phenomenon, force, and torque. This simulation has proven that the dual-stage configuration has an impact on reducing torque fluctuation of VAHT and show that different of inter-stage azimuth angle brings to different torque fluctuation pattern. The average torque value produced by the new turbine with variations in shift between stages of 45°, 60°, 75° and 90° is 10,119.21 Nm, 10,656.13 Nm, 10,490.31 Nm, and 10,457.3 Nm, respectively.

Publisher

IOP Publishing

Subject

General Engineering

Reference24 articles.

1. Respon to Pontoon and Pendulum Motion at Wave Energy Converter Based on Pendulum System;Irfan;E3S Web of Conferences,2017

2. Ocean Energy: Global Technology Development Status;Bhuyan,2009

3. Conceptual Design and Numerical Simulations of A Vertical Axis Water Turbine Used for Underwater Mooring Platforms;Wenlong;International Journal of Naval Architecture and Ocean Engineering,2013

4. Wake Structure of a Single Vertical Axis Wind Turbine;Posa;International Journal of Heat Fluid Flow,2016

5. Wind Tunnel Blockage Corrections: Review and Application to Savonius Vertical-Axis Wind Turbines;Ross;Journal of Wind Engineering and Industrial Aerodynamic,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3