Simulation of controlled modulus column installation using a large deformation finite element analysis

Author:

Amarathunga T,Liyanapathirana D S,Fuentes W,Leo C J,Hu P

Abstract

Abstract Controlled modulus columns (CMC) are widely used in ground improvement techniques where grout columns are constructed by penetrating an auger into the ground using the displacement approach. Numerical simulation of this problem is challenging owing to the large soil deformations associated with installation. Small strain-based finite element analysis procedures available in commercial finite element modeling software are unsuitable for simulating this problem because they cannot simulate large soil deformations around the auger during column installation. Hence, this study presents a numerical approach based on the finite element method to simulate the installation of CMCs. The numerical modeling technique adopted in this study considers large soil deformations around columns during penetration, and the proposed approach is based on remeshing and interpolation techniques. This method was developed using the Python development environment (PDE) within the ABAQUS/standard finite element program. It can penetrate columns below the ground surface without causing large mesh distortions. In this study, silty sand-type soil was considered; hence, the constitutive behavior was simulated using the Mohr–Coulomb criteria. The load-carrying capacity of a controlled modulus column was predicted and compared with an empirical equation based on the cone penetration resistance. The influence zone and failure mechanism of the soil during installation were determined by considering the stress distribution and soil flow pattern around the column.

Publisher

IOP Publishing

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3