Photovoltaic-thermal (PVT) technology: Review and case study

Author:

Ramos C A F,Alcaso A N,Cardoso A J M

Abstract

Abstract Nowadays, solar technology converts solar energy into electricity and heat separately. For electricity generation, the main obstacle is the fact that the photovoltaic cells produce less energy as the temperature increases. To overcome this, cooling techniques can be used to raise the efficiency of solar cells, in order to obtain greater power generation. The photovoltaic-thermal hybrid solar collector (or PVT) is an equipment that integrates a photovoltaic (PV) module, for the conversion of solar energy into electrical energy, and a module with high thermal conversion efficiency (T), which employs a thermal fluid. This optimization of solar conversion technology has the main objective of cooling the photovoltaic cells, for increased generation of electricity, while also resulting in useful thermal energy from the working fluid, therefore constituting a cogeneration equipment. The present work reviews the development and global panorama of PVT technology. Afterwards, a case study of a PVT system is presented, together with a theoretical and experimental study. A thermography analysis performed in this PVT system is also examined, which allows for a real-time study of its operating regimes in different conditions, mainly of its thermal behaviour, and for the diagnosis of hot spots that signal potential defects in the cells.

Publisher

IOP Publishing

Subject

General Engineering

Reference34 articles.

1. Photovoltaic thermal (PVT) collectors: A review;Charalambous;Appl Therm Eng,2007

2. Recommended standard for the characterization and monitoring of PV/thermal systems;Collins,2009

3. A review of PV, solar thermal and PV/thermal collector models in TRNSYS;Collins,2009

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3