A review on thermal conductivity of unsaturated bentonite

Author:

Ye W M,Shao C Y,Lu P H,Liu Z R,Chen L

Abstract

Abstract As unsaturated bentonite is used a buffer/backfill material in the construction of engineered barriers for high-level nuclear waste disposal, understanding its thermal properties is crucial for maintaining the operational stability of the repository. This review paper synthesizes research on the thermal conductivity of unsaturated bentonite, encompassing aspects of heat transfer mechanisms, measurement techniques, influencing factors, and prediction models. The results highlight that the transient and steady-state methods have emerged as the predominant techniques for measuring the thermal conductivity of unsaturated bentonite owing to their efficiency and the prevention of water redistribution within the sample throughout the testing phase. Factors such as dry density, degree of saturation, additive content, and temperature were observed to positively influence the thermal conductivity of unsaturated bentonite, whereas an increase in the ion concentration of the pore fluid decreased the thermal conductivity. The prediction models for the thermal conductivity of unsaturated bentonite are categorized into empirical, normalized, and theoretical models. Although empirical and normalized models provide some insight, they suffer from a lack of theoretical foundation, and the parameters they incorporate often lack clear physical significance, complicating their practical application despite their capacity to represent the multifield coupling characteristics of thermal conductivity. The advancements in microscopic testing methods and computational technology herald the potential of mesoscale models and machine learning as formidable tools for predicting the thermal conductivity of unsaturated bentonite, suggesting a promising direction for future research.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3