Catalytic activity of Pt/graphene prepared by strong electrostatic adsorption technique for proton exchange membrane fuel cells

Author:

Sukanya P,Konlayutt P

Abstract

Abstract In the proton exchange membrane (PEM) fuel cell development, the catalytic activity requires the smaller particle size, the better metal dispersion, the higher conductivity and the longer durability. With these, platinum on graphene was synthesized using the strong electrostatic adsorption (SEA) technique. The pH shifts of graphene was evaluated and the point of zero charge (PZC) was obtained at pH about 5.2. This was a mid-low PZC, where the positive charge of Pt (i.e, platinum tetraamine, [NH3]4Pt2+or PTA) was chosen as the metal precursor. The adsorption of PTA precursor on graphene was carried out at pH of 12 for one hour at room temperature. PTA on graphene was reduced in hydrogen environment, and transferred to Pt metal particle. The adsorption and reduction steps were repeat until the Pt metals percentage closed to 20%wt Pt/C (i.e, 19.3 % wt. for this work). The prepared Pt/graphene catalyst shows the smaller particle size that average particle size as 2.4 nm and highly better dispersion than the Pt/C-commercial. The Pt metal dispersion on the graphene support were inspected by transmission electron microscopy (TEM). The crystal structures and crystalline size were investigated by X-ray diffraction (XRD). Moreover, the electrochemical properties were tested using cyclic voltammetry (CV) and the accelerated durability test (ADT) was also carried out after 4000 cycles of reduction and oxidation reaction. Finally, the results were compared with the 20% wt. Pt/C-commercial catalysts. It was observed that the oxidation reduction reaction (ORR) activity in terms of mass activity (MA) and specific activity (SA) were better than Pt/C-commercial.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3