The Use of Distance Between Soil Layers in Predicting the Hydraulic Conductivity of Granular Soils

Author:

Alsakran Mohamed Ahmad,Zhu Jun-Gao

Abstract

Abstract This study presents a new empirical approach that can be used to determine the hydraulic conductivity of saturated granular soils. This empirical approach can be obtained through the relationship between the uniformity coefficient of the soil (Cu) and the distance between soil layers (S). For the granular filter materials that have the same particle size distribution, there can be different distances between layers of the soil, depending upon the soil’s density. The distance between soil layers can be obtained by dividing the length of the imaginary line by the number of intersected particles within the length. By using the distance between soil layers, the whole grain size distribution and the soil porosity are taken into consideration, which reflects the degree of compaction. Therefore, this empirical approach is a good representation of hydraulic conductivity.

Publisher

IOP Publishing

Subject

General Engineering

Reference23 articles.

1. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data;Jabro;Transactions of the ASAE,1992

2. Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis;Odong;Journal of American Science,2007

3. Journal of geology and mining research;Ishaku;Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3