The Laminar Flame Speed of Iso-Octane/Air/Ozone Lean Mixtures under Engine-Like Thermo-chemical Conditions

Author:

D’Amato Marco,Cantiani Antonio,Magi Vinicio,Viggiano Annarita

Abstract

Abstract A numerical study has been carried out to evaluate the suitability of using ozone to achieve stable combustion of a very lean iso-octane/air mixture in a spark-ignition engine. A CFD model has been developed to simulate the compression stroke of the engine and the model has been validated against experimental data. Such a model is able to simulate the chemical kinetics of iso-octane/air/ozone mixtures during the compression stroke, thus predicting the composition and the thermodynamic conditions of the mixture in the chamber at the spark ignition time. These conditions have been used to compute the laminar flame speed of such a mixture by employing a 1-D solver. The accuracy of the solver has been assessed by comparing the numerical results with experimental data. As regards ozonized air, no measured laminar flame speeds for iso-octane/air/ozone mixtures are available. Hence, the model has been validated against experimental data for methane/air/ozone mixtures. The model has been used to investigate iso-octane/air/ozone mixtures, with 0, 200 and 500 ppm of ozone at IVC. The stoichiometric and a lean case with ϕ = 0.5 have been compared. The results show that, during the engine compression stroke, ozone decomposition produces oxygen atoms, which attack fuel molecules producing OH-radicals. These radicals favor the low-temperature oxidation until ignition time is reached. At the ignition time, the thermodynamic conditions of the mixture, in terms of pressure and temperature, are similar for cases with and without ozone. However, with ozone, a partially oxidized mixture is obtained, which promotes an increase of the laminar flame speed to a value comparable to the case without ozone under stoichiometric conditions.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3