Abstract
Abstract
A new gradient elasticity model is employed to discuss strain gradient effects and its ability in predicting size effects on an elastic rock mass with microstructure, around an axisymmetric borehole under internal pressure and remote isotropic compressive stress. The constitutive equation of the model involves the Laplacian of the strain tensor multiplied by the gradient coefficient. The formulated boundary value problem is solved analytically to derive stress, strain, and displacement distributions and discuss respective gradient effects on the mechanical behavior of the rock mass and the corresponding borehole stability. The paper concludes with the employment of the Rankine failure criterion to investigate size effects on the stress concentration factor at the perimeter of the borehole, and the comparison with another gradient elasticity model which involves the Laplacian of the hydrostatic part of the strain tensor.