Author:
Wang Yanru,Oon Cheen Sean,Tran Manh-Vu,An Joshua Yap Kee
Abstract
Abstract
Heat exchangers have been widely used in various engineering applications. It is important to develop a highly efficient heat transfer equipment to reduce carbon footprint. In the current research, the effect of 0.025wt% CGNP/water nanofluid on convective heat transfer and pressure drop performance is investigated numerically in finned conduits with circular and square geometry. ANSYS FLUENT is used to analyze the turbulent flow inside the conduits with Reynolds number ranging from 7360 to 28011 and constant heat flux 12254.90W/m2 and 9615.38W/m2 in circular and square geometry, respectively. Only 1/8 of the pipe was constructed in the simulation as the geometry is symmetrical. The numbers of mesh elements are 465488 and 469144 for circular and square conduits. SST k-omega viscous model, SIMPLEC scheme and second-order upwind solvers are used in this model, where SST k-omega viscous model is good at solving turbulence parameters in the near wall boundary regions. It is found that the use of CGNP/water nanofluid can increase convective heat transfer coefficient without increasing pressure drop compared with water. Besides, the circular pipe shows higher heat transfer enhancement compared with square pipe. Furthermore, the increase in Reynolds number enhances the Nusselt number and heat transfer coefficient in both circular and square geometries. It is recommended that circular finned pipe and CGNP/water colloidal suspension could be applied in low turbulence flow setting heat exchanger.