Cross-laminated timber constructions in a sustainable future – transition to fossil free and carbon capture technologies

Author:

Tellnes Lars G. F.,Saxegård Simon A.,Johnsen Fredrik Moltu

Abstract

Abstract Cross laminated timber (CLT) has recently increased in use as a building material for low carbon design and is often applied in small and multi-story buildings. Several studies have shown lower fossil related greenhouse gas emission than alternatives, but the life cycle emissions vary substantially between different CLT producers. These emissions are mainly indirect and thus climate change mitigation could reduce these emissions. Previous research shows that that biofuels and carbon capture and storage (CCS) are technologies that have the potential to reduce the climate impacts of the CLT life cycle. This study assesses the impacts on climate change from CLT with these technologies within the framework of environmental product declarations (EPD). In the short run, switching to fossil free fuels provides a reduction in the carbon footprint of CLT. In the long run, CCS at the end-of-life of CLT buildings can provide a net negative carbon footprint over the life cycle. This assessment on the use of CLT is mainly related to the Sustainable Development Goal SDG9 Industries, innovation and infrastructure and the indicator for CO2 emissions per value added, so the assessment in this paper is mainly focused on this goal. SDG7 on affordable and clean energy and SDG15 Life on land are also relevant.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

1. Environmental performance of construction stage for glue and cross laminated timber;Tellnes,2018

2. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems;Guest;Environmental Impact Assessment Review,2013

3. Modelling options for module C and D: Experiences from 50 EPD for wood-based products in Norway;Tellnes;IOP Conf. Ser.: Earth Environ. Sci.,2019

4. Life cycle assessment of creosote treated wood and tall oil treated wood with focus on end of life. Proceedings IRG Annual wood and tall oil treated wood with focus on end of life;Tellnes,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3