CFD simulations of a Y-junction for the implementation of hydraulic short-circuit operating mode

Author:

Decaix J,Biner D,Drommi J-L.,Avellan F,Münch-alligné C

Abstract

Abstract In the framework of the XFLEX HYDRO H2020 European Project, one of the demonstrators focuses on the implementation of the hydraulic short-circuit on the pump storage power plant of Grand-Maison owned by Electricité De France (EDF). The Grand-Maison power plant is a two-level plant production with one plant located above the downstream reservoir and equipped with four Pelton turbines; a second plant located downstream the reservoir and equipped with eight reversible pump-turbines. Hydraulic short circuit consists in running pumps and turbines in the meantime to balance the energy consumption of the pumps compared to the grid. Such an operating mode allows increasing the flexibility of the power plant and targeting the requirement of balancing the intermittent production due to the growing of new renewable energies such as wind and solar power plants. The hydraulic short-circuit operating mode leads to a change in the flow paths in the penstocks and junctions compared to the normal turbine or pump modes. Indeed, compared to the pump mode, this mode will lead to a flow derivation at the junction between the penstocks directed to the Pelton units and the penstocks directed to the upper reservoir. As this mode have not been scheduled at the beginning of the power plant construction, it is necessary to quantitatively assess the singular head losses generated at the junction to be able to simulate the complete behaviour of the power plant by means of a 1D model. CFD simulations are carried out with the Fluent software for several configurations of hydraulic short-circuit defined by the ratio of flow rate deviated to the Pelton turbines.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3