Segmentation of municipal solid waste using artificial neural networks

Author:

St Kozodaev A,Kostromin N S,Kaplenkova P A,Sivova A N

Abstract

Abstract The article discusses the prospects of using neural networks and Waste-to-energy technology to create a rational and efficient waste management culture. The study determines the quality (by metrics) of a trained neural, network that determines the type of solid household waste, depending on various parameters of the model. Based on the analysis of the obtained metrics, a conclusion is made about the best parameters for the developed neural network model. This neural network was trained specifically for this study, and as was chosen TACO dataset. Brief theories of neural networks and Waste-to-energy technologies are also discussedenergy. Particular attention is paid to the need to use these tools together to reduce and suspend the formation of new landfills and energy generation. The article will be especially relevant for scientists in those countries where the percentage of recycled waste tends to zero.

Publisher

IOP Publishing

Subject

General Engineering

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3