Integration of vegetation layer with lightweight foam concrete roof and active moving-air-cavity for attic temperature reduction

Author:

Yew Ming Chian,Tang Kai Feng,Yew Ming Kun,Saw Lip Huat,Yeo Wei Hong,Ng Tan Ching

Abstract

Abstract The roof is the primary heat source for landed buildings since it is exposed to the sun. This will lead to significant heat gain in the attic, causing thermal discomfort for the indoor dwellers and increasing cooling loads. An ideal cool roof system plays an important role in inhibiting excessive heat gain and lowering the cooling load for attic temperature reduction. The experiment was conducted indoors by projecting two 500 W halogen spotlights at each roof model to replace the sunlight. The temperature of roof surface, attic, and moving-air-cavity (MAC) were measured using K-type thermocouples. The variation of temperature versus time for each roof model was compared against the predecessor design and base model. Significantly, with the cool roof model integrating vegetation layer, lightweight foam concrete roof tile, and active MAC with solar-powered fans, the attic temperature remained cool at 26.9 °C with a rate of 0.003 °C/min, 96.77% lower than the based model with reinforced concrete roof. The outstanding performance is due to the inventive cool roof system comprising the ability to minimize the heat gain while circulating the hot air efficiently in keeping the attic cool.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3