Can near-to-mid Infrared Spectral Energy Distribution Quantitatively Trace Protoplanetary Disk Evolution?

Author:

Liu 刘 Mingchao 明超ORCID,He 何 Jinhua 金华ORCID,Guo ZhenORCID,Ge 葛 Jixing 继兴ORCID,Tang 唐 Yuping 雨平ORCID

Abstract

Abstract Infrared (IR) spectral energy distribution (SED) is the major tracer of protoplanetary disks. It was recently proposed to use the near-to-mid IR (or K-24) SED slope α defined between 2 and 24μm as a potential quantitative tracer of disk age. We critically examine the viability of this idea and confront it with additional statistics of IR luminosities and SED shapes. We point out that, because the statistical properties of most of the complicated physical factors involved in disk evolution are still poorly understood in a quantitative sense, the only viable way is to assume them to be random so that an idealized “average disk” can be defined, which allows the α histogram to trace its age. We confirm that the statistics of the zeroth order (luminosity), first order (slope α), and second order characteristics (concavity) of the observed K-24 SEDs indeed carry useful information upon the evolutionary processes of the “average disk”. We also stress that intrinsic diversities in K-24 SED shapes and luminosities are always large at the level of individual stars so that the application of the evolutionary path of the “average disk” to individual stars must be done with care. The data of most curves in plots are provided on GitHub (Disk-age package https://github.com/starage/disk-age/).

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3