A method to obtain the wind field characteristics of super-large aperture radio telescope site based on single-point wind tower and numerical simulation

Author:

He Fei-Long,Xu Qian,Wang Na,Zhu Chun-Hua

Abstract

Abstract The influence of wind on the pointing accuracy of large aperture radio telescopes is becoming increasingly serious, especially at high observing frequency. Obtaining the wind field characteristics efficiently is very important to reduce the wind disturbance on antenna structure. In this paper, an error evaluation of numerical simulation method is established based on the measured data of single point wind tower, and the wind field characteristics are obtained from the evaluated numerical simulation results combined with the measured data for the 110 m aperture QiTai radio Telescope (QTT) site. According to the simulation results, compared with the measured data, the root mean square error (RMSE) of wind speed is less than 1 m s−1, and the minimum wind speed RMSE is 0.2 m s−1. An analysis of the wind field characteristics of the QTT site suggests that the active wind resistance design of the antenna periphery should focus on the SSW (south-south-west) direction.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3